954 09 75 24    revista@hidden-nature.com

Bibliografía

Bibliografía

1. De viajes, microbios y películas

Tratados

  • Naciones Unidas. (1967). Tratado sobre los principios que deben regir las actividades de los Estados en la exploración y utilización del espacio ultraterrestre, incluso la Luna y otros cuerpos celestes. Naciones Unidas. Disponible en: https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspacetreaty.html

Libros y relatos

  • Campbell Jr., J. W. (1938). ¿Quién anda ahí? Astounding Science Fiction.
  • Clarke, A. C. (1944). Los dragones de Titán.
  • Clarke, A. C. (1982). 2010: Odisea Dos. Ballantine Books.
  • Crichton, M. (1969). The Andromeda Strain. Alfred A. Knopf.
  • Lovecraft, H. P. (1927). El color que cayó del cielo. Revista Amazing Stories.
  • Wells, H. G. (1898). La guerra de los mundos. William Heinemann Ltd.

Películas

  • Espinosa, D. (Director). (2017). Life. Columbia Pictures, Skydance Media.
  • Hyams, P. (Director). (1984). 2010: Odisea Dos. Metro-Goldwyn-Mayer.
  • Howard, R. (Director). (1995). Apollo 13. Universal Pictures, Imagine Entertainment.
  • Scott, R. (Director). (2012). Prometheus. 20th Century Fox, Scott Free Productions.
  • Stanley, R. (Director). (2020). El color que cayó del cielo. SpectreVision, ACE Pictures Entertainment, XYZ Films.
  • Wise, R. (Director). (1971). La amenaza de Andrómeda. Universal Pictures.

Trabajos científicos

  • Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe. Harper & Brothers.
  • Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., Rebecchi, L., Pielak, G., Koshland, D., & Goldstein, B. (2017). Tardigrades use intrinsically disordered proteins to survive desiccation. Molecular Cell, 65(6), 975-984.
  • Čadek, O., Tobie, G., Van Hoolst, T., Massé, M., Choblet, G., Lefèvre, A., Mitri, G., Baland, R., Běhounková, M., Bourgeois, O., & Trinh, A. (2016). Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 43(11), 5653-5660.
  • Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11(6), 525-531.
  • Deshevaya, E. A., Shubralova, E. V., Novikova, N. D., & Alekhina, I. A. (2020). Microbiological investigation of the space dust samples collected on the ISS surface. Astrobiology, 20(5), 593-603.
  • Rebecchi, L., Altiero, T., Guidetti, R., Cesari, M., Bertolani, R., Negroni, M., & Rizzo, A M. (2009). Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE on FOTON-M3. Astrobiology, 9(6), 581-591.
  • Shmakova, L., Malavin, S., Iakovenko, N., Vishnivetskaya, T., Shain, D., Plewka, M., & Rivkina, E. (2021). A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Current Biology, 31(11), R712-R713.
  • Slobodkin, A. I., Gavrilov, S. N., & Chernykh, N. A. (2015). Spore-forming thermophilic bacterium within artificial meteorite survives entry into the Earth’s atmosphere on FOTON-M4 satellite landing module. Plos One, 10(7), e0132611.
  • Waite, J. H., Combi, M. R., Ip, W. H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Gell, D., Luhmann, J., Niemann, H., Yelle, R., & Müller-Wodarg, I. (2009). Ion neutral mass spectrometer results from the first flyby of Enceladus: Detection of a dynamic atmosphere. Nature, 460(7254), 487-490.

2. El suelo, un ecosistema a nuestro servicio

  • Banerjee S. and van der Heijden M. (2022) Soil microbiomes and one health. Nature Reviews Microbiology, 21: 6-20.

3. El papel de virus y bacterias en los ciclos de nutrientes 

4. La biología sintética: Diseñando microorganismos para salvar el planeta 

  • Arenas, J. M., Carrascal, F., & Montes, C. (2008). Breve historia de la construcción del Corredor Verde del Guadiamar. La restauración ecológica del río Guadiamar y el proyecto del Corredor Verde. La historia de un paisaje emergente, 29-64.
  • Domínguez, MT., Madejón, P., Marañón, T. & Murillo, J.M. (2010). Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. Eur J Forest Rest. 129:47-59.
  • Domínguez, MT., Marañón, T. & Murillo, J.M., Schulin, R. & Robinson, BH. (2010). Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water Air Soil Pollut. 205:305-321.
  • Ferreira, P. A. A., Bomfeti, C. A., Soares, C. R. F. D. S., Soares, B. L., & Moreira, F. M. D. S. (2018). Cupriavidus necator strains: zinc and cadmium tolerance and bioaccumulation. Scientia Agricola75, 452-460. https://doi.org/10.1590/1678-992X-2017-0071
  • Franco-Navarro, J.D. (2020). El desastre ambiental del Corredor Verde del Guadiamar. Hidden Nature – Número 11 · 3T/2020 – ISSN 2531-0402. DOI: 10.13140/RG.2.2.18284.18563. Disponible en el siguiente enlace: https://www.hidden-nature.com/revista/numero-11/el-desastre-ambiental-del-corredor-verde-del-guadiamar/
  • Rodríguez, A., Marañón, T., Domínguez, MT., Murillo, J.M., Jordano, D., Fernández Haeger, J. & Carrascal, F. (2009). Reforestación con arbustos para favorecer la conectividad ecológica en El Corredor Verde del Guadiamar. 5º Congreso Forestal Español.

5. Prebióticos y bioestimulantes para la salud del suelo

  • Aytenew, M., & Bore, G. (2020). Effects of organic amendments on soil fertility and environmental quality: A review. Plant Sci8(5), 112-119.
  • Matisic, M., Dugan, I., & Bogunovic, I. (2024). Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture14(4), 643.
  • Pérez-Burillo, S., Cervera-Mata, A., Fernández-Arteaga, A., Pastoriza, S., Rufián-Henares, J. Á., & Delgado, G. (2022). Why should we be concerned with the use of spent coffee grounds as an organic amendment of soils? A narrative review. Agronomy12(11), 2771.
  • Roche, D., Rickson, J. R., & Pawlett, M. (2024). Moving towards a mechanistic understanding of biostimulant impacts on soil properties and processes: a semi-systematic review. Frontiers in Agronomy6, 1271672.
  • Tiwari, J., Ramanathan, A. L., Bauddh, K., & Korstad, J. (2023). Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere33(2), 237-249.
  • Yousfi, S., Marín, J., Parra, L., Lloret, J., & Mauri, P. V. (2021). A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrass. Agronomy11(3), 573.

6. Las micorrizas, una solución microbiana para una agricultura y un planeta más sostenibles

  • Ahammed, G.J., & Hajiboland, R. (2024). Introduction to Arbuscular Mycorrhizal Fungi and Higher Plant Symbiosis: Characteristic Features, Functions, and Applications. In: Arbuscular Mycorrhizal Fungi and Higher Plants (eds. Ahammed, G.J., Hajiboland, R.), pp. 1–17. Springer, Singapore.
  • Miyata, K., & Umehara, M. (2024). Roles of Arbuscular Mycorrhizal Fungi for Essential Nutrient Acquisition Under Nutrient Deficiency in Plants. In: Arbuscular Mycorrhizal Fungi and Higher Plants (eds. Ahammed, G.J., Hajiboland, R.), pp. 123–148. Springer, Singapore.
  • Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763–775.
  • Shi, J., Wang, X., & Wang, E. (2023). Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Reviews, 74, 569–607.
  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3rd ed.). Academic Press. Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J., & Vierheilig, H. (2007). Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules, 12, 1290–1306.

7. El microbioma ambiental: Clave para alimentos funcionales más sostenibles y saludables.

  • Alcázar-Valle, M. et al. Bioactive Compounds, Antioxidant Activity, and Antinutritional Content of Legumes: A Comparison between Four Phaseolus Species. Molecules 25, 3528 (2020).
  • Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15, 579–590 (2017).
  • Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37, 634–663 (2013).
  • Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A. & Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat Rev Microbiol 18, 601–602 (2020).
  • Yanni, A. E., Iakovidi, S., Vasilikopoulou, E. & Karathanos, V. T. Legumes: A Vehicle for Transition to Sustainability. Nutrients 16, 98 (2024).Zhu, Y.-G. et al. Soil biota, antimicrobial resistance and planetary health. Environment International 131, 105059 (2019).

8. Nematodos: Actores fundamentales en la microbiología del suelo

  • Freckman D. Nematodes in Soil Ecosystems. University of Texas Press; 1982. p 1-206.
  • Pires D, Vicente CSL, Menéndez E, Faria JMS, Rusinque L, Camacho MJ, Inácio ML. The Fight against Plant-Parasitic Nematodes: Current Status of Bacterial and Fungal Biocontrol Agents. Pathogens. 2022. doi: 10.3390/pathogens11101178.
  • Yeates GW, Ferris H, Moens T, van der Putten. The role of nematodes in ecosystems. Nematodes as environmental indicators. Walingford, UK: CAB International. 2009. p. 1-44.

9. Hongos nematófagos: depredadores y aliados

  • Al-Ani, L. K. T., De Freitas Soares, F. E., Sharma, A., De los Santos-Villalobos, S., Valdivia-Padilla, A. V., & Aguilar-Marcelino, L. (2022). Strategy of Nematophagous Fungi in Determining the Activity of Plant Parasitic Nematodes and Their Prospective Role in Sustainable Agriculture. Frontiers In Fungal Biology, 3. https://doi.org/10.3389/ffunb.2022.863198
  • Jiang, X., Xiang, M., & Liu, X. (2017). Nematode-Trapping Fungi. Microbiology Spectrum, 5(1). https://doi.org/10.1128/microbiolspec.funk-0022-2016
  • Vidal-Diez de Ulzurrun, G., & Hsueh, Y. (2018). Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Applied Microbiology And Biotechnology, 102(9), 3939-3949. https://doi.org/10.1007/s00253-018-8897-5

10. Hongos saprobios: aliados naturales para recuperar la salud de suelos contaminados por metales pesados

  • Bareen, F., Shafiq, M., Jamil, S., 2012. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. Journal of hazardous materials 237, 186-193. https://doi.org/10.1016/j.jhazmat.2012.08.033
  • Martín-Peinado, F.J., Romero-Freire, A., García-Fernández, I., Sierra-Aragón, M., Ortiz-Bernad, I., Simón-Torres, M., 2015. Long-term contamination in a recovered area affected by a mining spill. Science of the Total Environment 514, 219-223. https://doi.org/10.1016/j.scitotenv.2015.01.102
  • Maurya, G.K., Pachauri, S., 2022. Fungi: The indicators of pollution. In: Bandh, S.A., Shafi, S. (Eds.), Freshwater Mycology, Elsevier, pp. 277-296. https://doi.org/10.1016/B978-0-323-91232-7.00012-X
  • Silva-Castro, G.A., Paniagua-López, M., Martín-Peinado, F.J., García-Romera, I., 2021. Hongos saprobios como estrategia de restauración de suelos contaminados por metales pesados. IX Simposio Nacional sobre control de la degradación y recuperación de suelos. http://hdl.handle.net/10261/262772
  • Simón, M., García, I., Martín-Peinado, F.J., Díez, M., del Moral, F., Sánchez, J.A., 2008. Remediation measures and displacement of pollutants in soils affected by the spill of a pyrite mine. Science of the Total Environment 407, 23-39. https://doi.org/10.1016/j.scitotenv.2008.07.040
  • Warnasuriya, S.D., Udayanga, D., Manamgoda, D.S., Biles, C., 2023. Fungi as environmental bioindicators. Science of the Total Environment 892, 164583. https://doi.org/10.1016/j.scitotenv.2023.164583
  • Zhang, M., Zhang, T., Zhou, L., Lou, W., Zeng, W., Liu, T., Yin, H., Liu, H., Liu, X., Mathivanan, K., Praburaman, L., Meng, D., 2022. Soil microbial community assembly model in response to heavy metal pollution. Environmental Research 213, 113576. https://doi.org/10.1016/j.envres.2022.113576

11. Innovaciones tecnológicas para la detección temprana de microorganismos patógenos cultivos

  • Kotwal J, Kashyap R, Pathan S. Agricultural plant diseases identification: From traditional approach to deep learning. Materials Today: Proceedings 2023, 80: 344–356
  • Trippa D, Scalenghe R, Basso MF, Panno S, Davino S, Morone C, Giovino A, Oufensou S, Luchi N, Yousefi S, Martinell F. Next-generation methods for early disease detection in crops. Pest Management Science 2024; 80: 245–261. DOI 10.1002/ps.7733
  • New method for the detection and identification of pathogens in early stages infections of crops with agro-industrial interest (AgrogenDetect). Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023, en el marco del Plan de Recuperación, Transformación y Resiliencia. Proyectos de colaboración público-privada 2021. Ministerio de Ciencia e Innovacion. Ref.: CPP2021-008989. Entidades: EEZ-CSIC, CEBAS-CSIC, Microgaia Biotech, SynTech Research Group, Fundación Parque Científico de Madrid, Biotechvana, Paudire R+D+i & Transfer.

12. ¿Es el agua regenerada usada para el riego de vegetales un vector de transmisión de determinantes de resistencia a antimicrobianos?

  • COM (2022) 0541, Urban wastewater treatment European Parliament legislative resolution of 10 April 2024 on the proposal for a directive of the European Parliament and of the Council concerning urban wastewater treatment (recast)
  • European Commission https://environment.ec.europa.eu/topics/water/water-scarcity-and-droughts_en (accessed 14/12/2024).
  • European Food Safety Authority (EFSA). (2023). Role of water used in the growing, handling and processing of fruits, vegetables and herbs on the spread of antimicrobial resistance (AMR) (OC/EFSA/BIOHAW/2023/01).
  • Gekenidis MT, Walsh F, Drissner D. Tracing Antibiotic Resistance Genes along the Irrigation Water Chain to Chive: Does Tap or Surface Water Make a Difference? Antibiotics (Basel). 2021 Sep 11;10(9):1100. doi: 10.3390/antibiotics10091100. PMID: 34572683; PMCID: PMC8469318.
  • Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, & Unión Europea. (2021). Assessment of water disinfection treatments to be used as sustainable wastewater reclamation strategies to mitigate antimicrobial resistance spread through the irrigation of crops RECWATER (TED2021-131427b-C21/C22). Programa NextGenerationEU, Plan de Recuperación, Transformación y Resiliencia.
  • Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). (2024). Aprobado el Real Decreto de reutilización de las aguas. Disponible en: miteco.gob.es.
  • Oliveira, M., Truchado, P., Cordero-García, R., Gil, M. I., Soler, M. A., Rancaño, A., García, F., Álvarez-Ordóñez, A., & Allende, A. (2023). Surveillance on ESBL-Escherichia coli and Indicator ARG in Wastewater and Reclaimed Water of Four Regions of Spain: Impact of Different Disinfection Treatments. Antibiotics, 12, 400. https://doi.org/10.3390/antibiotics12030400

13. ¿Seres “invisibles” pueden controlar el cambio climático?

  • Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T., Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J., Hutchins, D.A., Jansson, J.K., Karl, D.M., Koskella, B., Mark Welch, D.B., Martiny, J.B.H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V., Rich, V.I., Singh, B.K., Stein, L.Y., Stewart, F.J., Sullivan, M-B., Van Oppen, M.J.H., Scott C. Weaver, S.C., Webb, E.A., y Nicole S. Webster, N.S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology17(9), 569-586.
  • IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 35-115, doi: 10.59327/IPCC/AR6-9789291691647
  • Jiao, N., Luo, T., Chen, Q., Zhao, Z., Xiao, X., Liu, J., Jian, Z., Xie, S., Thomas, H., Herndl, G.J., Benner, R., Gonsior, M., Chen, F., Cai, W., y Robinson, C. (2024). The microbial carbon pump and climate change. Nature Reviews Microbiology, 22, 408-419.
  • Lee, H., y Romero, J. (2023) Climate change 2023: Synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • Peixoto, R., Voolstra, C.R., Stein, L.Y., Hugenholtz, P., Salles, J.F., Amin, S.A., Häggblom, M., Gregory, A., Makhalanyane, T.P., Wang, F., Agbodjato, N.A., Wang, Y., Jiao, N., Lennon, J.T., Ventosa, A., Bavoil, P.M.,Miller, V., y Gilbert, J.A (2025). Microbial solutions must be deployed against climate catastrophe. Nature Reviews Microbiology, 23, 1-2
  • Tiedje, J.M., Bruns M.A., Casadevall, A., Criddle, C.S., Eloe-Fadrosh, E., Karl, D.M., Nguyen, N.K., y Zhou, J. (2022).Microbes and Climate Change: a Research Prospectus for the Future. MBio, 13(3) 13:e00800-22.
  • Verstraete, W., Yanuka‐Golub, K., Driesen, N., y De Vrieze, J. (2022). Engineering microbial technologies for environmental sustainability: choices to make. Microbial Biotechnology15(1), 215-227.

14. Filosfera: los guardianes microscópicos de las hojas

  • Ling, M., Marshall, I. P., Rosati, B., Schreiber, L., Boesen, T., Finster, K., & Šantl-Temkiv, T. (2021). Properties relevant to atmospheric dispersal of the ice-nucleation active Pseudomonas syringae strain R10. 79 isolated from rain water. Aerobiologia37, 225-241.
  • Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). (2023). Índice de área foliar. Gobierno de España.
  • Muyshondt, B. (2023). An ecological perspective on phyllosphere bacterial communities in urban environments (Doctoral dissertation, University of Antwerp).
  • Rastogi, G., Coaker, G. L., & Leveau, J. H. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS microbiology letters348(1), 1-10.
  • Remus‐Emsermann, M. N., & Schlechter, R. O. (2018). Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytologist218(4), 1327-1333.
  • Wuyts, K., Smets, W., Lebeer, S., & Samson, R. (2020). Green infrastructure and atmospheric pollution shape diversity and composition of phyllosphere bacterial communities in an urban landscape. FEMS microbiology ecology96(1), fiz173.

15. Biodiversidad de microorganismos en cuevas visitables

  • Fernandez-Cortes, A., Cuezva, S., Alvarez-Gallego, M., Garcia-Anton, E., Pla, C., Benavente, D., Jurado, V., Saiz-Jimenez, C., Sanchez-Moral, S. 2015. Subterranean atmospheres may act as daily methane sink. Nature Communications 6, 7003. https://doi.org/10.1038/ncomms8003.
  • Gonzalez-Pimentel, J.L., Dominguez-Moñino, I., Jurado, V., Laiz, L., Caldeira, A.T., Saiz-Jimenez, C. 2022. The rare actinobacterium Crossiella is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 10, 1575. https://doi.org/10.3390/microorganisms10081575.
  • Martin-Pozas, T., S. Cuezva, A. Fernandez-Cortes, J.C. Cañaveras, D. Benavente, V. Jurado, C. Saiz-Jimenez, I. Janssens, N. Seijas, S. Sanchez-Moral. 2022. Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics. Science of the Total Environment. 831, 154921. http://dx.doi.org/10.1016/j.scitotenv.2022.154921
  • Martin-Sanchez, P.M., Nováková, A., Bastian, F., Alabouvette, C., Saiz-Jimenez, C. 2012. Two new species of the genus Ochroconis, lascauxensis and O. anomala isolated from black stains in Lascaux Cave, France. Fungal Biology 116, 574-589. https://doi.org/10.1016/j.funbio.2012.02.006.
  • Martin-Sanchez, P.M., Nováková, A., Bastian, F., Alabouvette, C., Saiz-Jimenez, C. 2012. Use of biocides for the control of fungal outbreaks in subterranean environments: The case of the Lascaux Cave in France. Environmental Science and Technology 46, 3762-3770. https://doi.org/dx.doi.org/10.1021/es2040625.
  • Saiz-Jimenez, C., Cuezva, S., Jurado, V., Fernandez-Cortes, A., Porca, E., Benavente, D., Cañaveras, J.C., Sanchez-Moral, S. 2011. Paleolithic art in peril: Policy and science collide at Altamira Cave. Science 334, 42-43. https://doi.org/10.1126/science.1206788.
  • Saiz-Jimenez, C. 2022. Journey into darkness: microbes living in caves and mines. Frontiers for Young Minds, 10, 739199. https://doi.org/10.3389/frym.2022.739199.

16. Xenex, la tecnología ‘no-touch’ de luz UV-C pulsada al servicio de los hospitales en la lucha contra las enfermedades nosocomiales

  • Al-Tawfiq, J. A., & Tambyah, P. A. (2014). Healthcare associated infections (HAI) perspectives. Journal of infection and public health, 7(4), 339-344. https://doi.org/10.1016/j.jiph.2014.04.003
  • Ananda, T., Modi, A., Chakraborty, I., Managuli, V., Mukhopadhyay, C., and Mazumder, N. (2022). Nosocomial infections and role of nanotechnology. , 9(2), 51. http://dx.doi.org/10.3390/bioengineering9020051
  • Anderson, J. G., Rowan, N. J., MacGregor, S. J., Fouracre, R. A., & Farish, O. (2000). Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Transactions on Plasma Science, 28(1), 83-88. https://doi.org/10.1109/27.842870
  • Astrid, F., Beata, Z., Julia, E., Elisabeth, P., and Magda, D.E. (2021). The use of a UV-C disinfection robot in the routine cleaning process: a field study in an Academic hospital. Resist. Infect. Control, 10(1), 84. https://doi.org/10.1186/s13756-021-00945-4
  • Barg, N. L. (1993). Environmental contamination with Staphylococcus aureus and outbreaks: the cause or the effect?. Infection Control & Hospital Epidemiology14(7), 367-368. https://doi.org/10.1086/646763
  • Boyce, J. M. (2007). Environmental contamination makes an important contribution to hospital infection. Journal of hospital infection65, 50-54. https://doi.org/10.1016/S0195-6701(07)60015-2
  • Boyce, J. M., Havill, N. L., Dumigan, D. G., Golebiewski, M., Balogun, O., & Rizvani, R. (2009). Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay. Infection Control & Hospital Epidemiology, 30(7), 678-684. https://doi.org/10.1086/598243
  • Boyce, J.M. (2016). Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Resist. Infect. Control, 5, 1-10. https://doi.org/10.1186/s13756-016-0111-x
  • Buhr, T. L., Borgers-Klonkowski, E., Gutting, B. W., Hammer, E. E., Hamilton, S. M., Huhman, B. M., … & Young, A. A. (2022). Ultraviolet dosage and decontamination efficacy were widely variable across 14 UV devices after testing a dried enveloped ribonucleic acid virus surrogate for SARS-CoV-2. Frontiers in Bioengineering and Biotechnology, 10, 875817. https://doi.org/10.3389/fbioe.2022.875817
  • Bures, S., Fishbain, J. T., Uyehara, C. F., Parker, J. M., & Berg, B. W. (2000). Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. American journal of infection control28(6), 465-471. https://doi.org/10.1067/mic.2000.107267
  • Casini, B., Tuvo, B., Cristina, M.L., Spagnolo, A.M., Totaro, M., Baggiani, A., and Privitera, G.P. (2019). Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. J. Environ. Res. Public Health, 16(19), 3572. https://doi.org/10.3390/ijerph16193572
  • Centers for Disease Control and Prevention. (2014). CDC/NHSN surveillance definitions for specific types of infections. IOP Publishing CDC Website. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf
  • Cheigh, C. I., Park, M. H., Chung, M. S., Shin, J. K., & Park, Y. S. (2012). Comparison of intense pulsed light-and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157: H7. Food Control, 25(2), 654-659. https://doi.org/10.1016/j.foodcont.2011.11.032
  • Commission Delegated Directive (EU) 2022/274-284. Commission Delegated Directive (EU) 2022/274 of 13 December 2021 amending, for the purposes of adapting to scientific and technical progress, Annex III to Directive 2011/65/EU of the European Parliament and of the Council as regards an exemption for the use of mercury in cold cathode fluorescent lamps and external electrode fluorescent lamps for special purposes. http://data.europa.eu/eli/dir_del/2022/274/oj
  • Cowen, A. E. (2001). The clinical risks of infection associated with endoscopy. Canadian Journal of Gastroenterology and Hepatology15(5), 321-331. https://doi.org/10.1155/2001/691584
  • Dancer, S.J. (2009). The role of environmental cleaning in the control of hospital-acquired infection. Hosp. Infect., 73(4), 378-385. https://doi.org/10.1016/j.jhin.2009.03.030
  • Derraik, J. G., Anderson, W. A., Connelly, E. A., & Anderson, Y. C. (2020). Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable PPE protocol using a double-hit process. MedRxiv, 2020-04. https://doi.org/10.1101/2020.04.02.20051409
  • Diffey, B. L. (1988). The risk of skin cancer from occupational exposure to ultraviolet radiation in hospitals. Physics in Medicine & Biology, 33(10), 1187. https://doi.org/10.1088/0031-9155/33/10/007
  • Dippenaar, R., & Smith, J. (2018). Impact of pulsed xenon ultraviolet disinfection on surface contamination in a hospital facility’s expressed human milk feed preparation area. BMC infectious diseases, 18, 1-6. https://doi.org/10.1186/s12879-018-2997-9
  • Directive, E. C. (2011). Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). Official Journal of the European Communities. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:174:0088:0110:en:PDF
  • Duarte, I., Rotter, A., Malvestiti, A., & Silva, M. (2009). The role of glass as a barrier against the transmission of ultraviolet radiation: an experimental study. Photodermatology, photoimmunology & photomedicine, 25(4), 181-184. https://doi.org/10.1111/j.1600-0781.2009.00434.x
  • El-Haddad, L., Ghantoji, S. S., Stibich, M., Fleming, J. B., Segal, C., Ware, K. M., & Chemaly, R. F. (2017). Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms. BMC Infectious Diseases, 17, 1-5. https://doi.org/10.1186/s12879-017-2792-z
  • Fornwalt, L., Ennis, D., and Stibich, M. (2016). Influence of a total joint infection control bundle on surgical site infection rates. J. Infect. Control, 44(2), 239-241. https://doi.org/10.1016/j.ajic.2015.09.010
  • Geroulanos, S., Hell, K., & Largiadèr, F. (1991). Infecciones Postoperatorias. Ed. Roche Ltd., Basel, Switzerland. ISBN: 3-907946-54-5, ISBN: 84-86917-46-8.
  • Getchell-White, S. I., Donowitz, L. G., & Groschel, D. H. (1989). The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infection Control & Hospital Epidemiology10(9), 402-407. https://doi.org/10.1086/646061
  • Ghantoji, S. S., Stibich, M., Stachowiak, J., Cantu, S., Adachi, J. A., Raad, I. I., & Chemaly, R. F. (2015). Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms. Journal of medical microbiology, 64(2), 191-194. https://doi.org/10.1099/jmm.0.000004
  • Han, A., Han, E., and Han Hv, E. (2011). Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Harting: Espelkamp, Germany. https://www.harting.com/sites/default/files/2017-09/RoHS_EL_several_articles-EN.pdf
  • Haas, J. P., Menz, J., Dusza, S., & Montecalvo, M. A. (2014). Implementation and impact of ultraviolet environmental disinfection in an acute care setting. American journal of infection control, 42(6), 586-590. https://doi.org/10.1016/j.ajic.2013.12.013
  • Hassan, K.A., Aftab, A., and Riffat, M. (2015). Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed., 505-509. https://doi.org/10.1016/j.apjtb.2015.05.001
  • Hausemann, A., Grünewald, M., Otto, U., and Heudorf, U. (2018). Cleaning and disinfection of surfaces in hospitals. Improvement in quality of structure, process and outcome in the hospitals in Frankfurt/Main, Germany, in 2016 compared to 2014. GMS Hyg. Infect. Control, 13. https://doi.org/10.3205/dgkh000312
  • Holland, J., Kingston, L., McCarthy, C., Armstrong, E., O’Dwyer, P., Merz, F., & McConnell, M. (2021). Service robots in the healthcare sector. Robotics, 10(1), 47. https://doi.org/10.3390/robotics10010047
  • Huber, T. W., Brackens, E., Chatterjee, P., Villamaria, F. C., Sisco, L. E., Williams, M. D., … & Jinadatha, C. (2020). Efficacy of pulsed-xenon ultraviolet light on reduction of Mycobacterium fortuitum. SAGE Open Medicine, 8, 2050312120962372. https://doi.org/10.1177/20503121209623
  • Huttner, A., Harbarth, S., Carlet, J., Cosgrove, S., Goossens, H., Holmes, A., & World Healthcare-Associated Infections Forum participants. (2013). Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrobial resistance and infection control2, 1-13. https://doi.org/10.1186/2047-2994-2-31
  • Ibrahim, M. A., MacAdam, J., Autin, O., & Jefferson, B. (2014). Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection. Environmental technology, 35(4), 400-406. https://doi.org/10.1080/09593330.2013.829858
  • Jinadatha, C., Quezada, R., Huber, T. W., Williams, J. B., Zeber, J. E., & Copeland, L. A. (2014). Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC infectious diseases, 14, 1-7. https://doi.org/10.1186/1471-2334-14-187
  • Jinadatha, C., Simmons, S., Dale, C., Ganachari-Mallappa, N., Villamaria, F. C., Goulding, N., … & Stibich, M. (2015). Disinfecting personal protective equipment with pulsed xenon ultraviolet as a risk mitigation strategy for health care workers. American journal of infection control, 43(4), 412-414. https://doi.org/10.1016/j.ajic.2015.01.013
  • Joshi, M., Kaur, S., Kaur, H.P., and Mishra, T. (2019). Nosocomial infection: source and prevention.  J Pharm. Sci. Res.10(4), 1613-1624. http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).1613-24
  • Khan, H. A., Ahmad, A., & Mehboob, R. (2015). Nosocomial infections and their control strategies. Asian pacific journal of tropical biomedicine5(7), 509-514. https://doi.org/10.1016/j.apjtb.2015.05.001
  • Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019
  • Kiyosawa, K., Tanaka, M., Matsunaga, T., Nikaido, O., & Yamamoto, K. (2001). Amplified UvrA protein can ameliorate the ultraviolet sensitivity of an Escherichia coli recA mutant. Mutation Research/DNA Repair, 487(3-4), 149-156. https://doi.org/10.1016/S0921-8777(01)00114-8
  • Legesse Laloto, T., Hiko Gemeda, D., and Abdella, S.H. (2017). Incidence and predictors of surgical site infection in Ethiopia: prospective cohort. BMC Infect. Dis.17, 1-9. https://doi.org/10.1186/s12879-016-2167-x
  • Levin, J., Riley, L. S., Parrish, C., English, D., & Ahn, S. (2013). The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. American journal of infection control, 41(8), 746-748. https://doi.org/10.1016/j.ajic.2013.02.010
  • Lipatov, E.I., Sosnin, E.A., & Avdeev, S.M. (2015). The inactivation of eggs of helminthes under the action of narrowband ultraviolet radiation of excilamps. In International Conference on Atomic and Molecular Pulsed Lasers XII (Vol. 9810, pp. 225-230). SPIE. https://doi.org/10.1117/12.2228995
  • Kollef, M.H., Torres, A., Shorr, A.F., Martin-Loeches, I., and Micek, S.T. (2021). Nosocomial infection.  Care Med.49(2), 169-187. https://doi.org/10.1097/CCM.0000000000004783
  • Maclayton, D. O., & Hall, R. G. (2007). Infectious Diseases: Pharmacologic Treatment Options for Nosocomial Pneumonia Involving Methicillin-Resistant Staphylococcus aureus. Annals of Pharmacotherapy, 41(2), 235-244. https://doi.org/10.1345/aph.1H414
  • Mangram, A.J., Horan, T.C., Pearson, M.L., Silver, L.C., Jarvis, W.R., and Hospital Infection Control Practices Advisory Committee. (1999). Guideline for prevention of surgical site infection, 1999.  Control Hosp. Epidemiol.20(4), 247-280. https://doi.org/10.1086/501620
  • Marra, A.R., Schweizer, M.L., and Edmond, M.B. (2018). No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Control Hosp. Epidemiol., 39(1), 20-31. https://doi.org/10.1017/ice.2017.226
  • Maslo, C., du Plooy, M., & Coetzee, J. (2019). The efficacy of pulsed-xenon ultraviolet light technology on Candida auris. BMC infectious diseases, 19, 1-3. https://doi.org/10.1186/s12879-019-4137-6
  • McDonald, K. F., Curry, R. D., Clevenger, T. E., Unklesbay, K., Eisenstark, A., Golden, J., & Morgan, R. D. (2000). A comparison of pulsed and continuous ultraviolet light sources for the decontamination of surfaces. IEEE Transactions on Plasma Science, 28(5), 1581-1587. https://doi.org/10.1109/27.901237
  • Mehta, I., Hsueh, H. Y., Taghipour, S., Li, W., & Saeedi, S. (2023). UV disinfection robots: a review. Robotics and autonomous systems, 161, 104332. https://doi.org/10.1016/j.robot.2022.104332
  • Mitchell, D. L., Jen, J., & Cleaver, J. E. (1992). Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation. Nucleic acids research, 20(2), 225-229. https://doi.org/10.1093/nar/20.2.225
  • Mohebbi, Z., Setoodeh, G., and Bagheri, S.H. (2018). Surgical site infection in the world and in Iran: Causes and outcomes. 2018. Available at: URL: https://www.omicsonline.org/proceedings/surgical-site-infection-in-the-world-and-in-iran-causes-and-outcomes-93074.html.
  • Nagaraja, A., Visintainer, P., Haas, J. P., Menz, J., Wormser, G. P., & Montecalvo, M. A. (2015). Clostridium difficile infections before and during use of ultraviolet disinfection. American Journal of Infection Control, 43(9), 940-945. https://doi.org/10.1016/j.ajic.2015.05.003
  • Nerandzic, M. M., Thota, P., Sankar, T., Jencson, A., Cadnum, J. L., Ray, A. J., … & Donskey, C. J. (2015). Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infection control & hospital epidemiology, 36(2), 192-197. https://doi.org/10.1017/ice.2014.36
  • Noskin, G. A., Stosor, V., Cooper, I., & Peterson, L. R. (1995). Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces. Infection Control & Hospital Epidemiology16(10), 577-581. https://doi.org/10.1086/647011
  • Oguma, K., Katayama, H., & Ohgaki, S. (2001). Determination of pyrimidine dimmers in the chromosomal DNA of Escherichia coli during photoreactivation following inactivation by medium-pressure UV lamp. Applied and Environmental Microbiology, 67, 4630-4637. https://doi.org/10.1128/AEM.67.10.4630-4637.2001
  • Oliveira, R.M.C., de Sousa, A.H.F., de Salvo, M.A., Petenate, A.J., Gushken, A.K.F., Ribas, E., Torelly, E.M.S., Silva, K.C.C.D., Bass, L.M., Tuma, P., Borem, P., Ue, L.Y., de Barros, C.G., and Vernal, S. (2024). Estimating the savings of a national project to prevent healthcare-associated infections in intensive care units.  Hosp. Infect.143, 8-17. https://doi.org/10.1016/j.jhin.2023.10.001
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. THE REVIEW ON ANTIMICROBIAL RESISTANCE. UK Government. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • Otaki M, Okuda A, Tajima K, Iwasaki T, Kinoshita S, Ohgaki S (2003) Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps. BMC Infect Dis 3:1–10. https://doi.org/10.2166/wst.2003.0193
  • Otter, J.A., Yezli, S., and French, G.L. (2011). The role played by contaminated surfaces in the transmission of nosocomial pathogens. Control Hosp. Epidemiol., 32(7), 687-699. https://doi.org/10.1086/660363
  • Ratliff, K., Oudejans, L., Calfee, W., Abdel‐Hady, A., Monge, M., & Aslett, D. (2022). Evaluating the impact of ultraviolet C exposure conditions on coliphage MS2 inactivation on surfaces. Letters in applied microbiology, 75(4), 933-941. https://doi.org/10.1111/lam.13770
  • Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., McIlvaney, L., & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and environmental microbiology, 65(3), 1312-1315. https://doi.org/10.1128/AEM.65.3.1312-1315.1999
  • San Antonio Express-news. (2023, Sep 6). Xenex’s pathogen-zapping LightStrike robot gets FDA authorization for use in health care facilities [Press Release]. https://www.expressnews.com/business/article/xenex-lightstrike-robot-gets-fda-approval-use-18348580.php
  • San Antonio Express-news. (2024, April 18). Morris Miller, CEO of Xenex, wants to invade U.S. hospitals with germ-killing robots [Press Release]. https://www.expressnews.com/sa-inc/article/xenex-morris-miller-hospitals-germ-killing-robots-19252506.php
  • Schaefer, R., Grapperhaus, M., Schaefer, I., & Linden, K. (2007). Pulsed UV lamp performance and comparison with UV mercury lamps. Journal of Environmental Engineering and Science, 6(3), 303-310. https://doi.org/10.1139/s06-068
  • Septimus, E.J., and Moody, J. (2016). Prevention of device-related healthcare-associated infections. F1000Research5. https://doi.org/10.12688/f1000research.7493.1
  • Simmons, S., Dale Jr, C., Holt, J., Passey, D.G., and Stibich, M. (2018). Environmental effectiveness of pulsed-xenon light in the operating room.  J. Infect. Control46(9), 1003-1008. https://doi.org/10.1016/j.ajic.2018.02.027
  • Simmons, S. E., Carrion, R., Alfson, K. J., Staples, H. M., Jinadatha, C., Jarvis, W. R., … & Stibich, M. A. (2021). Deactivation of SARS-CoV-2 with pulsed-xenon ultraviolet light: Implications for environmental COVID-19 control. Infection Control & Hospital Epidemiology, 42(2), 127-130. https://doi.org/10.1017/ice.2020.399
  • Stibich, M., Simmons, S., and Passey, D. (2020). 10 Years of Pulsed-Xenon Ultraviolet Disinfection. Infection Control & Hospital Epidemiology41(S1), s438-s438. https://doi.org/10.1017/ice.2020.1104
  • Stibich, M., and Stachowiak, J. (2016). The microbiological impact of pulsed xenon ultraviolet disinfection on resistant bacteria, bacterial spore and fungi and viruses. Southern African Journal of Infectious Diseases, 31(1), 12-15. https://doi.org/10.4102/sajid.v31i1.103
  • Stibich, M., Stachowiak, J., Tanner, B., Berkheiser, M., Moore, L., Raad, I., & Chemaly, R. F. (2011). Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infection Control & Hospital Epidemiology, 32(3), 286-288. https://doi.org/10.1086/658329
  • Taherpour, N., Mehrabi, Y., Seifi, A., Eshrati, B., and Hashemi Nazari, S.S. (2021). Epidemiologic characteristics of orthopedic surgical site infections and under-reporting estimation of registries using capture-recapture analysis. BMC Infect. Dis., 21, 1-7. https://doi.org/10.1186/s12879-020-05687-z
  • UNEP, United Nations Environment Programme. 2019. Minamata Convention On Mercury. https://minamataconvention.org/
  • Vieira, G.D.D., Mendonça, H. R., Alves, T.D.C., Araújo, D.F.D.O., Silveira Filho, M.L.D., Freitas, A.P.D.S.R.D., et al. (2015). Survey of infection in orthopedic postoperative and their causative agents: a prospective study. Revista da Associação Médica Brasileira, 61, 341-346. https://doi.org/10.1590/1806-9282.61.04.341
  • Villacís, J.E., Lopez, M., Passey, D., Santillán, M.H., Verdezoto, G., Trujillo, F., Paredes, G., Alarcón, C., Horvath, R., and Stibich, M. (2019). Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital. BMC Infect. Dis., 19, 575. https://doi.org/10.1186/s12879-019-4200-3
  • Weber, D. J., Anderson, D., & Rutala, W. A. (2013). The role of the surface environment in healthcare-associated infections. Current opinion in infectious diseases26(4), 338-344. https://doi.org/10.1097/QCO.0b013e3283630f04
  • Weber, D. J., and Rutala, W.A. (2013). Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Control Hosp. Epidemiol., 34(5), 449-452. https://doi.org/10.1086/670223
  • World Health Organization. (2016). Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level. World Health Organization. https://www.who.int/publications/i/item/9789241549929

¡Aviso! Hidden Nature no se hace responsable de la precisión de las noticias publicadas realizadas por colaboradores o instituciones, ni de ninguno de los usos que se le dé a esta información.

Autor Hidden Nature

Desde Hidden Nature intentamos abordar la ciencia desde 3 formatos diferentes: 1) Multimedia, con un canal de divulgación científica en Youtube; 2) escrito, mediante un blog con entradas sobre divulgación científica; y 3) impreso, mediante una revista de divulgación científica trimestral.


Los artículos de la revista Hidden Nature en formato digital, cuentan con el ISSN 2531-0178. Si quieres participar con tus artículos de divulgación científica en nuestra revista, escríbenos a revista@hidden-nature.com

Hidden Nature
Resumen de políticas de privacidad

Este sitio web utiliza cookies para mejorar su experiencia mientras navega por Hidden Nature. Las cookies necesarias para el correcto funcionamiento del sitio se almacenan en su navegador, ya que son esenciales para el funcionamiento de las funciones básicas de nuestra web. Aunque también utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no aceptar estas cookies. Sin embargo, la exclusión de algunas de estas cookies puede afectar a su experiencia de navegación por nuestra web.

A continuación mostramos la lista de cookies necesarias y no necesarias.

COOKIE TIPO DURACIÓN
_cookie_law_info-* persistent 1year
_cookie_law_info* persistent 1year
_cookie_notice_acepted, _viewed_cookie_policy persistent 1year
_unam, _sharethis_cookie_test_ third party 1month
_wordpress*, _wp_* session 1month
Google analytics third party 1year
wfwaf-authcookie-(hash) persistent 1month
wordpress_test_cookie session 1year