954 09 75 24    revista@hidden-nature.com



Reflexiones sobre la contaminación, el modelo productivo y la crisis del COVID-19

El desastre ambiental del Corredor Verde del Guadiamar

  • Arenas, J. M., Carrascal, F., & Montes, C. (2008). Breve historia de la construcción del Corredor Verde del Guadiamar. La restauración ecológica del río Guadiamar y el proyecto del Corredor Verde. La historia de un paisaje emergente, 29-64.
  • Borja, F., López Geta, J. A., Martín Machuca, M., Mantecón, R., Mediavilla, C., del Olmo, P., Palancar, M. & Vives, R. (2001). Marco geográfico, geológico e hidrológico regional de la cuenca del Guadiamar. Boletín Geológico y Minero. Vol. Especial, 13-34.
  • Domínguez, MT., Madejón, P., Marañón, T. & Murillo, J.M. (2010). Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. Eur J Forest Rest. 129:47-59.
  • Domínguez, MT., Marañón, T. & Murillo, J.M., Schulin, R. & Robinson, BH. (2010). Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water Air Soil Pollut. 205:305-321.
  • Marañón, T., & Madejón, E. (2014). El Corredor Verde del Guadiamar como estudio de caso en el proyecto europeo RECARE. Revista Ecosistemas, 23(1), 81-82.
  • Rodríguez, A., Marañón, T., Domínguez, MT., Murillo, J.M., Jordano, D., Fernández Haeger, J. & Carrascal, F. (2009). Reforestación con arbustos para favorecer la conectividad ecológica en El Corredor Verde del Guadiamar. 5º Congreso Forestal Español.

La contaminación por nitratos en la agricultura y sus efectos en la salud humana: beneficio de una fertilización en cloruro

  • Colla G., Kim H.J., Kyriacou M.C., Rouphael Y. (2018) Nitrate in fruits and vegetables. Scientia Horticulturae 237:221-238.
  • Colmenero-Flores J.M., Franco-Navarro J.D., Cubero-Font P., Peinado-Torrubia P., Rosales M.A. (2019) Chloride as a beneficial macronutrient in higher plants: new roles and regulation. International Journal of Molecular Sciences 20:4686.
  • Franco-Navarro J.D., Brumós J., Rosales M.A., Cubero-Font P., Talón M., Colmenero-Flores J.M. (2016) Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany 67:873-891.
  • Nitrates Directive (1991) Council Directive 91/676/EEC concerning the protection of waters against pollution (https://ec.europa.eu/environment/water/water-nitrates/index_en.html.)
  • Público.es (2007) El síndrome del niño azul (https://especiales.publico.es/hemeroteca/24130/el-sindrome-del-nino-azul)
  • Rosales M.A., Franco-Navarro J.D., Peinado-Torrubia P., Díaz-Rueda P., Álvarez R., Colmenero-Flores J.M. (2020) Chloride improves nitrate utilization and NUE in plants. Frontiers in Plant Science 11:442.
  • Sánchez E. (2019) La asfixia del mar Menor. El País. (https://elpais.com/sociedad/2019/10/18/actualidad/1571415252_866797.html)
  • Umar A.S., Iqbal M. (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications: a review. Agronomy for Sustainable Development 27:45-57

Las plantas no sólo limpian el aire…

  • Haq, S., Bhatti, A. A., Dar, Z. A., & Bhat, S. A. (2020). Phytoremediation of Heavy Metals: An Eco-Friendly and Sustainable Approach. In Bioremediation and Biotechnology(pp. 215-231). Springer, Cham.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal28(4), 380-394.
  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., … & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and environmental safety126, 111-121.
  • Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, M., Prakashmaran, J., … & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental chemistry letters16(4), 1339-1359.
  • Tauqeer, H. M., Ali, S., Rizwan, M., Ali, Q., Saeed, R., Iftikhar, U., … & Abbasi, G. H. (2016). Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicology and environmental safety126, 138-146.
  • Yeh, T. Y., & Lin, C. (2018). Overview of integrated phytoremediation for heavy metals contaminated soil. Sustainable Forestry1(4).

Contaminación por metales pesados

  • Gil-Martínez, M., Navarro-Fernández, C.M., Murillo, J.M., Domínguez, M.T., Marañón, T., 2020. Trace elements and C and N isotope composition in two mushroom species from a mine-spill contaminated site. Scientific Reports 10: 6434. doi:10.1038/s41598-020-63194-2


  • Amaral-Zettler, L. A., Zettler, E. R. and Mincer, T. J. (2020). Ecology of the plastisphere. Nature Reviews, 18: 139-151
  • Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J., F., Juanes, F. and Dudas, S. (2019). Human Consumption of Microplastics. Environmental Science & Technology, 53 (12)
  • Dodson, G. Z., Shotorban, A. K., Hatcher, P. G., Waggoner, D. C., Ghosal, S. and Noffke, N. (2020). Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Marine Pollution Bulletin, 151
  • Li, L., Luo, Y., Peijnenburg, W. J. G. M., Li, R., Yang, J. and Zhou, Q. (2020). Confocal measurement of microplastics uptake by plants. MethodsX, 7
  • Modica, L., Lanuza, P. and García-Castillo, G. (2020). Surrounded by microplastic, since when? Yesting the feasibility of exploring past levels of plastic microfibre pollution using natural history museum collections. Marine Pollution Bulletin, 151
  • Narrillos, Estefanía. (27 de marzo de 2019). Los plásticos de un solo uso, prohibidos a partir de 2021. Noticias Parlamento Europeo. Recuperado de: https://www.europarl.europa.eu/news/es/press-room/20190321IPR32111/los-plasticos-de-un-solo-uso-prohibidos-a-partir-de-2021
  • National Oceanic and Atmosphere Administration [NOAA]. (2020). What are microplastics?. Recuperado de: https://oceanservice.noaa.gov/facts/microplastics.html
  • Wang, Q., Bai, J., Ning, B., Fan, L., Sun, T., Fang, Y., … and Gao, Z. (2020). Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere, 254
  • Yeo, B. G., Takada, H., Yamashita, R., Okazaki, Y., Uchida, K., Tokai, T., … and Trenholm, N. (2020). PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan. Marine Pollution Bulletin, 151
  • Zhang, D., Liu, X., Huang, W., Li, J., Wang, C., Zhang, D. and Zhang, C. (2020). Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean. Environmental Pollution, 259

¿Podemos comer sin contaminar?

  • Fernández J.E. 2014. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural Water Management, 142: 99-109
  • E. Fernández. Plant-Based Methods for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3(2), 35; doi:10.3390/horticulturae3020035 (registering DOI).
  • Fernández, J.E., Diaz-Espejo, A., Romero, R., Hernandez-Santana, V., García, J.M., Padilla-Díaz, C.M., Cuevas. 2017. Precision irrigation in olive (Olea europaea L.) tree orchards. In: Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops. Chapter 9, pp. 179-218. Elsevier, ISBN: 978-0-12-813164-0
  • E. Fernández, F. Alcon, A. Diaz-Espejo, V. Hernandez-Santana, M.V. Cuevas. 2020. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard, Agricultural Water Management Agricultural Water Management 237 (2020) 106074. https://doi.org/10.1016/j.agwat.2020.106074

Contaminantes emergentes en larvas de crustáceos: los “pequeños olvidados” en el ciclo de vida de los invertebrados acuáticos.

  • Gilbert N (2011) Discharges from pharmaceutical factories contaminate rivers on three continents Nature 476, 265.
  • González-Ortegón, E., Blasco, J., Le Vay, L., & Giménez, L. (2013). A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. Journal of hazardous materials, 263, 233-238.
  • González-Ortegón, E., Giménez, L., Blasco, J., & Le Vay, L. (2015). Effects of food limitation and pharmaceutical compounds on the larval development and morphology of Palaemon serratus. Science of the total environment, 503, 171-178.
  • González-Ortegón, E., Blasco, J., Nieto, E., Hampel, M., Le Vay, L., & Giménez, L. (2016). Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris. Science of the Total Environment, 540, 260-266.
  • González-Ortegón et al 2020 Microplastic pollution in the surface waters of the gulf of cadiz VII International Symposium on Marine Sciences ISMS 2020 Barcelona (Spain), July 2020.
  • Roose P, Albaigés J, Bebianno MJ, et al. (2011) Chemical Pollution in Europe’s Seas: Programmes, Practices and Priorities for Research.
  • Rosi-Marshall, E. J., & Royer, T. V. (2012). Pharmaceutical compounds and ecosystem function: an emerging research challenge for aquatic ecologists. Ecosystems, 15(6), 867-880.
  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100, 178–186.

Bioindicadores de contaminación del agua

  • Gove, J.M. et al. 2019. Los plásticos del tamaño de una presa están invadiendo los viveros de larvas. PNAS. Recuperado desde: pnas.org/content/116/48/24143.
  • Chengye, M. et al. 2019. Comparative analysis of heavy metal accumulation and bioindication in three seagrasses: Which species is more suitable as a bioindicator?. Science of the total environment. (669). 41-48.
  • Ballesteros, E. et al. 2007. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Marine Pollution Bulletin. (55). 172-180.
  • Vázquez, G. 2006. Bioindicadores como herramientas para determinar la calidad del agua. Recuperado desde: agua.org.mx/wp-content/uploads/2017/11/Bioindicadores-como-herramientas-para-determinar-la-calidad-del-agua.pdf.
  • – Y.X et al. 2020. Barnacles as potencial bioindicator of microplastic pollution in Hong Kong. Marine Pollution Bulletin. Recuperado desde: sciencedirect.com/science/article/abs/pii/s0025326X20301995.

Efecto del confinamiento por COVID-19 en el medio ambiente

  • Cheng, V. C., Lau, S. K., Woo, P. C., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical microbiology reviews, 20(4), 660-694. https://doi.org/10.1128/CMR.00023-07
  • Deryabina, T. G., Kuchmel, S. V., Nagorskaya, L. L., Hinton, T. G., Beasley, J. C., Lerebours, A., & Smith, J. T. (2015). Long-term census data reveal abundant wildlife populations at Chernobyl. Current Biology, 25(19), R824-R826. https://doi.org/10.1016/j.cub.2015.08.017
  • ESA (2020). http://www.esa.int/.
  • Garnier-Laplace, J., Geras’kin, S., Della-Vedova, C., Beaugelin-Seiller, K., Hinton, T. G., Real, A., & Oudalova, A. (2013). Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. Journal of environmental radioactivity121, 12-21. https://doi.org/10.1016/j.jenvrad.2012.01.013
  • Google (2020). Mapa de los contagios de COVID-19 a tiempo real. https://www.google.com/covid19-map
  • Lipsitch, M., Swerdlow, D. L., & Finelli, L. (2020). Defining the epidemiology of Covid-19—studies needed. New England Journal of Medicine, 382(13), 1194-1196.  https://doi.org/10.1056/NEJMp2002125
  • Mousseau, T. A., & Møller, A. P. (2014). Genetic and ecological studies of animals in Chernobyl and Fukushima. Journal of Heredity, 105(5), 704-709. https://doi.org/10.1093/jhered/esu040
  • Orizaola, G. (2019). “De desierto nuclear a laboratorio evolutivo”. Valencia, España.  Mètode Science Studies Journal. Universitat de València. https://doi.org/10.7203/metode.10.15682
  • Schlichting, P. E., Love, C. N., Webster, S. C., & Beasley, J. C. (2019). Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs18, e00107. https://doi.org/10.1016/j.fooweb.2018.e00107
  • Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … & Guan, L. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet. 395(10229, 28), pág. 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3

La contaminación por metales pesados también llega a las aves

  • Barceló, J. y Poschenrieder, C. (1992). Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta, 2: 345-361.
  • Rainio, M. J.; Kanerva, M.; Salminen, J.; Nikinmaa, M. y Eeva, T. (2013). Oxidative status in nestlings of three small passerine species exposed to metal pollution. Science of the Total Environment, 454-455: 466-473.
  • Goutte, A. et al. (2014). Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proceedings of the Royal Society B, 281: 10.1098/rspb.2013.3313
  • Dauwe, T.; Bervoets, L.; Pinxten, R.; Blust, R. y Eens, M. (2003). Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environmental Pollution, 124: 429-436.
  • Ashkoo, A.; Amininasab, S. M. y Zamani-Ahmadmahmoodi, R. (2020). Bioaccumulation of heavy metals in eggshell and egg content of seabirds: Lesser (Thalasseus bengalensis) and Greater Crested Tern (Thalasseus bergii). Marine Pollution Bulletin, 154: 111126.

¡Aviso! Hidden Nature no se hace responsable de la precisión de las noticias publicadas realizadas por colaboradores o instituciones, ni de ninguno de los usos que se le dé a esta información.

Autor Hidden Nature

Desde Hidden Nature intentamos abordar la ciencia desde 3 formatos diferentes: 1) Multimedia, con un canal de divulgación científica en Youtube; 2) escrito, mediante un blog con entradas sobre divulgación científica; y 3) impreso, mediante una revista de divulgación científica trimestral.

Los artículos de la revista Hidden Nature en formato digital, cuentan con el ISSN 2531-0178. Si quieres participar con tus artículos de divulgación científica en nuestra revista, escríbenos a revista@hidden-nature.com